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(57) ABSTRACT 

An electric propulsion machine includes an ion thruster hav-
ing an annular discharge chamber housing an anode having a 
large surface area. The ion thruster includes flat annular ion 
optics with a small span to gap ratio. Optionally, a second 
electric propulsion thruster may be disposed in a cylindrical 
space disposed within an interior of the annulus. 

20 Claims, 12 Drawing Sheets 

€' 465 
472 420 

f462 

400 410  
430

4.50 ~ 	450 
440  --- 

470 

470  442 	``444 

460 464 



t 

U.S. Patent 	Jun. 25, 2013 
	

Sheet 1 of 12 	 US 8,468,794 B1 

a 

P"` 	 pn 

T 



C) 

i 

rjo 

C) 

U.S. Patent 	Jun. 25, 2013 
	

Sheet 2 of 12 	 US 8,468,794 B1 



U.S. Patent 	Jun. 25, 2013 	Sheet 3 of 12 	 US 8,468,794 B1 

CD 

ED 

IZT 
LO 

C) 



o_ 

3 ~ 

q 

~ 
~ 
~ 6 @ 

~ k 9--  C? Lu S£ —u 

~ 

~ 

G 

U.R. Patent 
	

J#n 2\ 2O!] 	Sheet 4 of 12 	US 8,468,794 GI 

cc 

~ w  cli 

R « 
cz 

E 
cn 

u1i 

S c CL 7bbd 

<2 ~ k~ CL 9 
« o  // 3 Q7ƒ k2/ 
S g ~ /3 ~ G/ 

~ 
~ 
~ 



U.S. Patent 	,Tun. 25 , 2013 	Sheet 5 of 12 	US 8,468,794 B1 

m 

CD 
cn 
co 

co 
	II 

Al 
Is Ni IIVH 

co 

Ism4i NOI 
A @ 

313Y2E9 ~~ t 

Cl 
LO 
cc 



U.S. Patent 	Jun. 25, 2013 	Sheet 6 of 12 	 US 8,468,794 B1 

C) 

;z 
CD 

 --\ I , .,  I 
i 	I 	N 

Cp 

CD 

co 



U.S. Patent 	,Tun. 25, 2013 	Sheet 7 of 12 	 US 8,468,794 B1 
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Fig. 13 
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ELECTRIC PROPULSION APPARATUS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/295,326 filed Jan. 15, 2010. 

ORIGIN OF THE INVENTION 
10 

The invention described herein was made by employees of 
the United States Government and may be manufactured and 
used by or for the Government for Government purposes 
without the payment of any royalties thereon or therefore. 

15 

BACKGROUND 

Two general types of electric propulsion thrusters used in 
space include ion thrusters and Hall-effect thrusters. 	20  

Both ion thrusters and Hall-effect thrusters are `electro-
static' electric propulsion devices used for spacecraft propul-
sion that create thrust by accelerating ions. The thrust created 
is very small compared to conventional chemical rockets, but 
a very high specific impulse, or high exhaust velocity, which 25  
reduces the propellant requirements for missions is obtained. 
This high `propellant efficiency' is achieved through the very 
frugal propellant consumption of the electric propulsion sys-
tem. They do however require large amounts of power; typi-
cally 1 kWe per 0.030-0.040 Newtons thrust for ion thrusters, 30 

and 1 kWe per 0.050-0.080 Newtons thrust for Hall-effect 
thrusters. 

Ion thrusters and Hall-effect thrusters both generate a beam 
of ions (electrically charged atoms or molecules) to create 
thrust in accordance with Newton's third law. The method of 35 

accelerating the ions varies, but all designs take advantage of 
the charge/mass ratio of the ions. This ratio means that rela-
tively small potential differences can create very high exhaust 
velocities. This reduces the amount of reaction mass or fuel 
required, but increases the amount of specific power required 40 

compared to chemical rockets. Electric propulsion thrusters 
are therefore able to achieve extremely high specific 
impulses. 

The drawback of the low thrust is low spacecraft accelera-
tion because the mass of current electric power units is 45 

directly correlated with the amount of power required. This 
low thrust makes electric propulsion unsuited for launching 
spacecraft into orbit, but they are ideal for in-space propulsion 
applications. 

Gridded electrostatic ion thrusters commonly utilize xenon 50 

gas. This gas has no charge and is ionized by bombarding it 
with energetic electrons. These electrons can be provided 
from an electron source as a hot cathode filament, or more 
typically a hollow cathode assembly (FICA), which are then 
accelerated in the electrical field of the cathode fall to the 55 

anode (Kaufman type ion thruster). 
The positively charged ions are extracted by an extraction 

system consisting of 2 or 3 multi-aperture grids. After enter-
ing the grid system via the plasma sheath the ions are accel-
erated due to the potential difference between the first and 60 

second grid (named screen and accelerator grid) to the final 
ion energy of typically 1-2 keV, thereby generating the thrust. 
Typical ion velocities are in the range of 20,000-50,000 m/s, 
and higher for some energetic mission applications. 

In spacecraft propulsion, a Hall-effect thruster also accel- 65 

erates ions by an electric field. Hall-effect thrusters trap elec-
trons in a radial magnetic field and then use the electrons to  

ionize propellant, efficiently accelerate the ions to produce 
thrust, and neutralize the ions in the plume. 

The essential working principle of the Hall-effect thruster 
is that it uses an electrostatic potential to accelerate ions up to 
high speeds but does so without the application of a gridded 
extraction system used in ion thrusters. In a Hall-effect 
thruster the attractive negative charge is provided by an elec-
tron plasma at the open end of the thruster instead of a grid. A 
radial magnetic field of a few tens of milli-Tesla is used to 
confine the electrons, where the combination of the magnetic 
field and an attraction to the anode upstream surface force a 
fast circulating electron current around the axis of the thruster 
and only a slow axial drift towards the anode occurs. 

A propellant, such as xenon gas is fed through the anode, 
which has numerous small holes in it to act as a gas distribu-
tor. As the neutral xenon atoms diffuse into the channel of the 
thruster, they are ionized by collisions with high energy cir-
culating electrons. 

The xenon ions are then accelerated by the electric field 
between the anode and the cathode. The ions quickly reach 
speeds of around 15,000 m/s for a specific impulse of 1,500 
seconds (15 kN•s/kg). Upon exiting however, the ions pull an 
equal number of electrons with them, creating a plume with 
no net charge. The axial magnetic field is designed to be 
strong enough to substantially deflect the low-mass electrons, 
but not the high-mass ions which have a much larger gyrora-
dius and are hardly impeded. About 30% of the discharge 
current is an electron current which does not produce thrust, 
which limits the energetic efficiency of the thruster; the other 
70% of the current is in the ions. The ionization efficiency of 
the thruster is thus around 90%. 

The magnetic field thus ensures that the discharge power 
predominately goes into accelerating the xenon propellant 
and not the electrons, and the thruster turns out to be reason-
ably efficient. 

Because of the counter-flowing electron and ion currents in 
the Hall-effect thruster channel, a greater ion flux can be 
achieved as compared to that of the ion thruster thereby 
yielding higher thrust-to-power than ion thrusters. Ion thrust-
ers however are capable of achieving higher exhaust veloci-
ties with higher overall thrust efficiencies. 

BRIEF SUMMARY 

It would be desirable in the propulsion field to provide an 
electric propulsion device that delivers the performance capa-
bilities of high thrust-to-power devices (such as Hall-effect 
thrusters) and the high specific impulse of high total-impulse 
devices (such as electrostatic gridded-ion thrusters). 

One limitation is that no single Electric Propulsion 
Thruster (EPT) exists which can operate over the full specific 
impulse range of interest and do so with the combined char-
acteristics of both Hall-effect and ion thrusters, such as high 
Thrust-to-Power (T/P). 

The design attributes of the Hall-effect thruster and the ion 
thrusters specific to their ion-acceleration systems: the Hall-
effect thruster utilizes backstreaming electrons accelerated 
from an external cathode toward an anode upstream of a 
radial-geometry magnetic field within an azimuthally-sym-
metric channel to generate a plasma and create counter-flow-
ing accelerated ion current; and the ion thruster utilizes a 
closely-spaced multi-aperture electrodes (electrostatic `ion 
optics') with a large applied E-field to focus and accelerate 
ions from a discharge plasma to form a (space-charge-lim-
ited)—mono-energetic beam. 

DESCRIPTION OF DRAWINGS 

The accompanying drawings, which are incorporated in 
and constitute a part of the specification, illustrate various 
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example systems, methods, and so on that illustrate various 
example embodiments of aspects of the invention. It will be 
appreciated that the illustrated element boundaries (e.g., 
boxes, groups of boxes, or other shapes) in the figures repre-
sent one example of the boundaries. One of ordinary skill in 5 

the art will appreciate that one element may be designed as 
multiple elements or that multiple elements may be designed 
as one element. An element shown as an internal component 
of another element may be implemented as an external com-
ponent and vice versa. Elements may not be drawn to scale 10 

and in some instances, cross-hatching is not shown to 
improve clarity. 

FIG. 1 is a perspective view of selected components of an 
exploded, partially cut-away, electric propulsion machine. 

FIG. 2 is a side view of ion optics. 	 15 

FIG. 3 is a cross-sectional view taken along line 3-3. 
FIG. 4 is a side cross-sectional view of an electric propul- 

sion machine. 
FIG. 5 is a top plan view, partially cut away, of an exem- 

plary electric propulsion machine. 	 20 

FIG. 6 is a side cross-sectional view of the electric propul-
sion machine shown in FIG. 5. 

FIG. 7 is a simplified electric power circuit for an electric 
propulsion machine. 

FIG. 8 is a side cross-sectional view of an alternate mani- 25 

festation of an electric propulsion machine. 
FIG. 9 is a simplified electric power circuit for an electric 

propulsion machine. 
FIG. 10 is a side cross-sectional view of an alternate mani- 

festation of an electric propulsion machine. 	 30 

FIG. 11 is a chart illustrating operating modes of an exem-
plary electric propulsion machine. 

FIG. 12 is a plot illustrating maximum input power and 
specific impulse for an exemplary electric propulsion 
machine. 35 

FIG. 13 is a plot illustrating maximum thrust and specific 
impulse for an exemplary electric propulsion machine. 

FIG. 14 is a plot illustrating input power and specific 
impulse for an exemplary electric propulsion machine. 

FIG. 15 is a plot illustrating thrust and specific impulse for 40 

an exemplary electric propulsion machine. 
FIG. 16 is a plot illustrating engine efficiency vs. specific 

impulse of an exemplary electric propulsion machine. 

DETAILED DESCRIPTION 	 45 

As used herein, the relevant design attributes of a Hall-
effect and ion thrusters are their respective ion-acceleration 
systems: an azimuthally-symmetric channel with axial 
E-field and radial B-field for the Hall-effect thruster yielding 50 

closed-drift electrons to generate a plasma and create counter-
flowing accelerated ion current; and closely-spaced multi-
aperture electrodes or electrostatic ion optics with a large 
applied E-field to focus and accelerate ions from a discharge 
plasma to form a space-charge-limited mono-energetic beam 55 

for the ion thruster. 
The plasma production and acceleration mechanisms of 

the Hall thruster are closely-coupled and are intimately con-
nected to the geometric construction of the thruster discharge 
geometry. 60 

On the other hand ion thrusters have de-coupled plasma 
production and acceleration mechanisms. As such, the 
thruster discharge geometry can be constructed in a variety of 
fashions without compromising the operational integrity of 
the ion thruster so long as the acceleration mechanism, the 65 

electrode geometry, is maintained. An ion thruster discharge 
chamber may take a number of geometries—cylindrical, an  

4 
oblate-spheroid, rectangular-box, etc. So long as there is a 
high degree of azimuthal symmetry to the ion thruster dis-
charge geometry, a magnetic circuit can be designed to con-
tain the discharge plasma that will yield a high discharge 
electrical efficiency. This is particularly true whenthethruster 
is operated at high plasma densities. Maintaining high dis-
charge electrical efficiency is an important consideration 
when trying to improve thrust to power (T/P)-ratio and overall 
thruster efficiency. 

In a first embodiment illustrated in exploded and partially 
cut away FIG. 1, an electric propulsion machine includes an 
ion thruster 100 comprising an annular discharge chamber 
110 and annular ion optics 120 covering an exhaust annulus 
130. The ion thruster further includes a centrally-mounted 
neutralizer cathode 140 all arranged along a common axis A. 
Off axis A, but disposed within the annular discharge cham-
ber 110, an exemplary ion thruster further includes at least 
one discharge cathode 150 and a propellant source 160 
together forming a discharge cathode assembly 170. As fur-
ther discussed below, an anode (not shown) is disposed within 
the annular discharge chamber 110. 

It is appreciated that the ion optics 120 are shown 
"exploded." from the exhaust annulus 130. The ion optics 120 
may be configured as a set of parallel annular electrodes 
having an outer radius 180 substantially conforming to an 
outside edge of the ion thruster 100. The ion optics further are 
defined by an inner radius 182 selected to ensure the exhaust 
annulus is covered by the ion optics 120. A distance or span 
190 is defined between the outer radius 180 and the inner 
radius 182. Moreover, ion optics 120 include closely-spaced 
apertures 122, usually circular, through the thickness which 
are aligned between the electrodes. In one example, on the 
outer most electrode, the apertures are 0.075' diameter, with 
0.093" center-to-center spacing in a hexagonal array, so the 
electrode has a very high open area fraction. Using the 
example, across any 1-inch span there are –10 apertures. 

With reference now to FIGS.1 and 2, a side view illustrates 
that the ion optics 120 may include a set of two parallel, 
substantially planar annular electrodes, 210, 220. The elec-
trodes are spaced apart by a substantially uniform gap 230. In 
an embodiment the electrodes 210, 220 comprise flat pyro-
lytic graphite ion optics. 

With reference now to FIG. 3, a top-down, cross-sectional 
view taken along III-III of FIG. 1, illustrates one embodiment 
of a plurality of discharge cathode assemblies 170 distributed 
about a closed end 310 of the annular discharge chamber 110 
opposite of the exhaust annulus. Propellant channel 320 pro-
vides a path of fluid communication to the neutralizer cathode 
140. In another embodiment, the discharge chamber may be 
defined by a cylindrical shape 350 on an exterior side and a 
conic shape (not shown) on the interior producing a chamber 
of linearly increasing or decreasing annular, cross-sectional 
spans between the closed end to the exhaust annulus. 

With reference now to FIG. 4, cross-sectional, side view of 
an exemplary electric propulsion machine configured as an 
ion thruster 400 shows an annular discharge chamber 410 and 
annular ion optics 420 covering an exhaust annulus 430. The 
ion thruster 400 further includes a central cylinder 440 defin-
ing an interior surface 442 of the annular discharge chamber 
410. The interior surface may be configured with magnetic 
shielding 472 to create a field-free region along the central 
core. Opposite the exhaust annulus 430, the discharge cham-
ber 410 terminates in a closed annular end 444. An outermost 
surface 446 opposes the interior surface 442 and together, 
interior surface 442, closed end 444 and outermost surface 
446 define the discharge chamber 410. 



US 8,468,794 B1 
5 

An anode 450 may be operatively disposed within and 
electrically insulated from the discharge chamber 410. In the 
illustrated embodiment, the anode 450 is electrically isolated 
and disposed along the interior surface 442, closed end 444 
and outermost surface 446. Such an anode 450 provides addi-
tional surface area when compared to an anode disposed 
along only a single surface, for example the outer surface. As 
more completely described below, the added surface area 
improves electrical characteristics of the engine. Ion thruster 
400 is further illustrated with a discharge cathode assembly 
460 to generate a discharge plasma, the cathode assembly 
including a cathode 462 and propellant feed 464. Rare earth 
permanent magnets 470 are embedded within or formed inte-
grally with the interior surface 442 and outermost surface 446 
to establish a boundary magnetic circuit, of ring-cusp, or 
line-cusp geometry, to contain and control the energetic elec-
trons emitted from the cathode assembly 460 to create an 
efficient plasma. Although only illustrated partially on a 
single side of the chamber 410, it is understood that the 
magnets 470 line the surfaces 442, 446. At least one ion 
plenum 480 is disposed toward the exhaust annulus 430 to 
provide a second, and primary, propellant feed. 

One advantage of the illustrated ion thruster 400, as com-
pared to ion thrusters of conventional configuration (cylindri-
cal discharge with spherically-domed circular ion optics), 
includes the annular discharge chamber being able to provide 
for efficient packaging by providing a central position for 
mounting the neutralizer cathode assembly (NCA) 486 
within the annulus. This reduces the outer profile of the 
engine and eliminates the need for a cantilevered-outboard 
NCA employed on conventional ion thrusters. 

Another advantage of the illustrated ion thruster 400 
includes the annular-geometry ion optics allowing for scaling 
of ion thrusters to very high power by permitting very-large 
beam areas with relatively small electrode spans, and rela-
tively small span-to-gap ratios. This reduces the manufactur-
ing, and the mechanical and thermal stability issues inherent 
with attempting to increase the beam area via increasing the 
diameter of spherically-domed ion optics as on conventional 
cylindrical ion thrusters. 

Another advantage of the illustrated ion thruster 400 
includes the annular-geometry ion optics allowing for the 
application of flat ion optics electrodes. Flat electrodes 
improve thrust to power (T/P)-ratios and efficiencies as com-
pared to conventional ion thrusters by substantially reducing 
or eliminating the off-axis beam vectoring of ions which 
occurs with spherically-domed ion optics electrodes. 

Another advantage of the illustrated ion thruster 400 
includes the annular-shaped discharge chamber providing an 
opportunity to increase the effective anode-surface area for 
electron-collection as compared to a conventional cylindri-
cally-shaped ion thrusters of equivalent beam area. This 
allows the illustrated engine to operate at the full-capability of 
the ion optics, and not have its maximum input power level 
limited by the available anode surface area. This increase in 
anode surface area allows the engine to operate at higher 
discharge currents and therefore higher beam currents and 
input power levels than a conventional ion thruster of equiva-
lent beam area for a given specific impulse. Alternatively, for 
the same input power, the increased anode surface area asso-
ciated with this annular geometry allows the engine to include 
a smaller outside diameter than a conventional ion thruster. 

For example, the NEXT ion thruster (nominal 40 cm beam 
diameter) has a beam area of approximately 1257 cm 2, and a 
discharge chamber anode area of approximately 3334 cm 2 . 

An engine according to the teachings here permit a smaller 
diameter (comparable to that of the 30 cm diameter NSTAR 

6 
ion thruster) yielding a comparable discharge chamber anode 
area of approximately 3336 cm 2, using an outside annular 
discharge chamber diameter of only 31 cm and an inside 
annular discharge chamber diameter of 6 cm (inside which a 

5  neutralizer cathode assembly may be contained). As detailed 
in Table 1, an annular discharge chamber engine may support 
an annular beam area of about 727 cm 2  which is sufficient to 
support operation of the engine at the full-power operating 
power of the larger NEXT thruster 3.52A beam current and 

l0 6.86 kWe. Such an engine would have a much reduced optics 
span, and optics span-to-gap ratio as compared to the NEXT 
ion thruster. 

15 
TABLE 1 

Engine 

Conventional EPT 
Attribute NEXT Ion Thruster Annular Engine 

20 Beam Diameter, cm 40.0 31.0 
Beam Area, cm2  1257 727 
Discharge Chamber 3334 3336 
Anode Surface Area, cm Z  
Anode Surface Area to 2.56:1 4.59:1 
Beam Area 

25 	Optics Span, cm 40.0 12.5 
Optics Span-to-Gap Ratio 606:1 189:1 

In operation an annular thruster channels propellant flow 
through the discharge cathode assembly (DCA) 460, the ion 

30 plenum 480, and the central common NCA 486. As discussed 
more completely below, an Ion Anode Power Supply, an Ion 
Beam Power Supply and an Ion Accelerator Electrode Power 
Supply are all energized. Operating range would be typically 
2000-5000 seconds specific impulse. 

35 With reference now to FIG. 5, in another embodiment, a 
dual electric propulsion machine includes an ion thruster 500 
comprising an annular discharge chamber 505 underlying ion 
optics 510 and a secondthruster 520, illustrated and described 
here as a Hall-effect thruster. In thi s illustration an ion thruster 

4o 500 including an annular-shaped discharge chamber and 
annular-shaped ion optics 510 are mounted circumferentially 
around the exterior of a second thruster 520, a Hall-effect 
thruster arranged on a common axis and a centrally-posi-
tioned neutralizer cathode 540 common to both the ion and 

45 Hall-effect plasma sources. 
Referring now to FIG. 6, a cross-sectional, side view of the 

exemplary dual electric propulsion machine shown in FIG. 5 
includes an annular ion thruster component 600 surrounding 
a central, second electric propulsion thruster component con- 

50 figured as a Hall-effect thruster 610. The annular ion thruster 
600 includes an annular discharge chamber 620. The annular 
discharge chamber 620 is defined by an outer surface 622, a 
closed annular end 624 and an interior surface 626 that may 
be configured with magnetic shielding to magnetically shield 

55 the NCA from the magnetic circuit of the ion thruster and 
Hall-effect components 600, 610. The annular ion thruster 
600 further includes annular ion optics 630 covering an 
exhaust annulus 640, and an anode 650 operatively disposed 
within and electrically insulated from the discharge chamber 

6o 610. While the illustrated anode 650 is configured to maxi-
mize surface area by occupying substantially the surface area 
of the outer surface 622, the closed end 624 and the interior 
surface 626, alternately structured anodes may occupy less of 
the interior space of the annular discharge chamber 620 

65 depending on electrical and power requirements. 
The annular ion thruster 600 is further illustrated with a 

discharge cathode assembly 660 to generate a discharge 
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plasma, the cathode assembly including a cathode 662 and 
propellant feed 664. Permanent magnets 670 are embedded 
within the outer wall 622 and interior wall 626. As above, the 
magnets are only illustrated partially, it is understood that the 
magnets 670 may be annularly disposed within the walls 622, 
626, or discreet magnets may be spaced around the discharge 
chamber 620 and/or spaced between the exhaust annulus 640 
and the end 624. Additionally, at least one ion plenum 680 is 
disposed near the exhaust annulus 640 side of the chamber 
620 to provide a second propellant feed. In operation, the 
annular ion thruster 600 provides thrust from the exhaust 
annulus 630 as indicated by the arrow 690 although it is 
appreciated that thrust is provided from all or substantially all 
of the exhaust annulus 640. 

With continued reference to FIG. 6, the Hall-effect thruster 
component 610 may include a separate anode 692 and ple-
num 694 to supply propellant to the Hall closed drift channel 
696 having a radial magnetic field and axial electric field to 
generate plasma and create counter flowing accelerated ion 
currents. Electron trajectories are illustrated by arrows ema-
nating from a common neutralizer cathode 698 and thrust is 
illustrated by arrow 699 but understood to be distributed 
around the Hall-effect component 610. 

In one embodiment, a dual electric propulsion machine 
provides for efficient packaging to minimize overall engine 
diameter. 

In one embodiment of a dual electric propulsion machine 
using a Hall-effect thruster component 610 as the second 
propulsion engine, maintains the design integrity of the Hall-
effect thruster to ensure its performance characteristics of 
high T/P-ratio at low specific impulse; 

A centrally-located neutralizer cathode assembly (NCA) 
698 may provide dual functionality as both the discharge 
plasma generation andbeam neutralization for the Hall-effect 
component 610, and beam neutralization for the ion thruster 
component 600. Additionally, a centrally located NCA 698 
may reduce the outer profile of the engine and eliminate the 
need for a cantilevered-outboard NCA (not shown) dedicated 
for the operation of the ion thruster. 

The annular-geometry ion optics 630 allow for very-large 
beam areas while creating very small electrode spans, and 
very small span-to-gap ratios. This permits use of flat ion 
optics electrodes. Flat electrodes yield improved T/P-ratios 
and efficiencies as compared to Current ion thrusters. This is 
because conventional ion thrusters are cylindrical in geom-
etry, requiring spherically-domed ion optics electrodes to 
ensure both adequate stiffness for launch vibration, and 
then no-mechanical stability under thermal loads during 
operation to maintain a uniform, controlled inter-electrode 
gap over very-large spans. The domed electrodes however 
result in thrust-losses associated with beamlets directed off-
axis. Reducing thrust-losses associated with off-axis beam 
vectoring by using flat electrodes result in an improvement in 
overall efficiency for a given input power as more completely 
described below. 

The annular-shaped discharge chamber 620 of the ion com-
ponent 600 of the dual electric propulsion machine increases 
the effective anode-surface area for electron-collection as 
compared to a conventional cylindrically-shaped ion thruster 
of equivalent beam area. This allows the ion thruster compo-
nent 600 to operate utilizing the full-perveance capability of 
the ion optics 630, and not have its maximum input power 
level limited by the available anode surface area. This 
increase in anode surface area allows the ion component to 

8 
operate at higher discharge currents and therefore higher 
beam currents and input power levels than current ion thrust-
ers of equivalent beam area for a given specific impulse. This 
increase in input power capability will be more completely 

5  described below. 

The increase in operable surface area due to expanded 
surface available in the annulus also creates more radiative 
surface, permitting operation at higher discharge power levels 

10 as compared to a comparable beam area thruster of conven-
tional construction. This is expected to maintain acceptable 
temperature margins on critical components such as the rare-
Earth permanent magnets. 

Geometric differences in ion optics electrodes 630, and 
15  discharge chamber anode surface areas as compared to con-

ventional ion thrusters are documented in Tables 2 and 3 
respectively. For purposes of illustration, the center core, or 
second thruster of the dual thruster engine is assumed to be a 
NASA GRC 3O0M Hall-Effect thruster in this embodiment. 

20  The 3O0M is a 20 kW-class laboratory electric propulsion 
thruster with an external diameter of 15 3/8" (39 cm). 

Dual thruster engines with an ion thruster beam area 
equivalent to a conventional cylindrical ion thruster are listed 

25 in Table 2. As noted the dual thruster engine approach allows 
for a dramatic reduction in optics span, and span-to-gap ratio 
for a given beam area. Specifically, in one example, a 4-6x 
reduction in span and span-to-gap ratios. This comparatively 
small span is expected to result in a first-mode natural fre- 

30 quency high enough to allow for the use of flat electrodes. 
This in combination with the application of a long-life, low 
thermal coefficient-of-expansion material such as pyrolytic-
graphite for the electrodes will provide an optimal flat-elec-
trode design solution which is expected to eliminate the 

35 
thrust-losses inherent with a domed electrode geometry used 
in conventional ion thrusters. 

TABLE 2 

40 
Engine 

	

Conventional EPTs 	Dual Thruster Engine 

45 Optics Attribute 	NSTAR NEXT 50 cm 	A 

Area, cm2 	625 	1257 	1963 	625 	1257 	1963 

Span, cm 	 28.2 	40.0 	50.0 	4.56 	8.43 	12.2 

Span-to-Gap Ratio 427:1 	606:1 	757:1 	69:1 	128:1 185:1 
50 

The differences in anode surface areas between conven-
tional electric propulsion thrusters (Ion thrusters: NSTAR 
and NEXT are partial-conic; 50 cm is cylindrical) and the 

55 annular-portion (ion component) of the dual thruster engine 
having an equivalent beam area are documented in Table 3 
(assuming a core of a 3O0M Hall-Effect thruster component). 
As noted, the dual thruster engine yields a much larger anode 

60 surface area for an equivalent beam area; e.g. —2.4x increase 
in area as compared to the NEXT ion thruster. It should be 
noted that these calculations are based on the increase in 
geometric surface area of the anode. For ring-cusp magnetic 
circuit plasma discharges the actual effective anode surface 

65 area is the sum of the magnetic cusp lineal areas. While 
estimated, the surface area ratios documented in Table 3 
should be reasonably accurate. 
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TABLE 3 

Conventional EPTs 	Dual thruster Engine 
5 

Attribute 	 NSTAR NEXT 50 cm 	̀A' 	̀B' 	̀C' 

Beam Area, cm2  625 	1257 	1963 	625 1257 	1963 
Discharge Chamber 2138 	3334 	5490 	6776 7954 	9192 
Anode Surface Area, 
cmZ  10 
Anode Surface Area to 3.42:1 	2.65:1 	2.80:1 	10.84:1 6.33:1 4.68:1 
Beam Area 
Ratio of Dual Thruster 3.17:1 2.39:1 	1.67:1 
Engine-to- 
Conventional EPT 
Anode Area 15 

The comparatively-large surface area of the dual thruster 
engine anode compared to either beam area alone or anode 
area of conventional EPT's of the same or similar beam areas 
allows for operation at higher discharge currents. This 20 

enables operation at much higher power levels, thereby taking 
full-advantage of the current-extraction capability (per-
veance) of the ion optics. 

Several other design features and attributes of embodi-
ments of the dual thruster-engine are noted here, with contin- 25 

ued reference to FIG. 6. 
The Hall-effect component 610 of the dual thruster engine 

may be of conventional construction, using a solenoid elec-
tromagnet (not shown) to create the appropriately-shaped 
radial magnetic field at the exit plane of the channel. Use of a 30 

centrally-located cathode 698, and implementation of the 
extensible-channel concept (to enhance life time) employed 
on the NASA GRC HiVHAC low power Hall-effect thruster 
may be used in the dual thruster. 

A ring-cusp magnetic circuit is shown within the annular 35 

ion discharge chamber 620, created by rows of alternating-
polarity rare-Earth permanent magnets 670 attached or 
embedded within the surfaces of the annular discharge cham-
ber surfaces 622, 626. Magnetic shielding 676 may be added 
between the exterior of the Hall-effect discharge 678 and the 40 

ion exhaust annulus 640 to separate the magnetic circuits of 
the two discharges. Alternately, it may be possible to use the 
fringe-magnetic field created by the Hall-effect discharge 
solenoid magnet which would naturally penetrate into the 
annular ion discharge chamber 620 without shielding and 45 

shape it by appropriate application of magnetic materials 
within the walls of the annular ion discharge chamber 620 to 
generate and control the discharge plasma in this zone. This 
would be with the potential benefit of reduced mass by elimi-
nation of the rare-Earth permanent magnets 670. 50 

The annular discharge chamber 620 of the ion thruster 
component 600 may include a conventional discharge cath-
ode assembly (DCA) 662 to generate the discharge plasma. 

Typical ion thrusters require 3 separate propellant feeds; a 
Hall-effect thruster 2 propellant feeds. In one embodiment a 55 

dual thruster uses a total of 4 separate propellant feeds: one 
each for the ion discharge 680 and Hall discharge 694; one for 
the ion DCA 664; and one for the central common NCA 698. 

The annular discharge chamber 620 of the ion thruster 
component 600 may use a `reverse-feed' plenum which may 60 

inject the propellant from the ion optics-end of the discharge 
backwards, giving it an initial axial velocity component 
resulting in an increased neutral atom residence time and 
improved propellant efficiency. 

The dimensions of the channel width and depth of the 65 

Hall-effect component 610 would be defined by the intended 
operating power level(s).  

10 
The annular area of the ion optics 630 would be established 

by the intended operating power level(s), which would then 
establish the electrode span (and discharge channel width) 
and overall dual thruster outside diameter. 

The depth of the annular ion component discharge cham-
ber 620 may include a tradeoff of electrical and propellant 
efficiencies, maximum desired input power, and overall dual 
thruster mass. It may be, for example, most effective 
mechanically and magnetically to match the channel depths 
of the ion thruster component 600 and the Hall-effect com-
ponent 610. 

With reference now to FIG. 7, a simplified electrical dia-
gram for a dual thruster is shown. Of note is that sufficient 
commonality exists in the requirements associated with the 
ion thruster component 600 beam power supply and the Hall-
effect component 610 anode power supply that this function 
could be performed by a common power converter. 

With reference now to FIG. 8, in another embodiment of 
the dual thruster, it may be advantageous to eliminate the 
DCA, and rely on the central common NCA 810 for plasma 
generation and beam neutralization of both the Hall-effect 
thruster component 820 and ion thruster component 830 of 
the dual thruster. Such a device may comprise one hollow 
cathode emitter 812 and propellant feed 814, reducing the 
total propellant feeds for the engine from 4 to 3. 

One additional advantage to this approach is to eliminate 
the asymmetry in the ion thruster component 830 created by 
a singular discharge cathode assembly within an annular-
shaped discharge chamber 836. This asymmetry could cause 
a (minor) asymmetry in the plasma at the plane of the ion 
optics 840, and also result in a (minor) asymmetry in the 
magnetic circuit (`a hole') in the area of the DCA resulting in 
an increase in discharge electrical losses. 

In the same manner that the discharge plasma is generated 
for the Hall-effect component, namely electron-back-stream-
ing of current from the NCA 810 to the Hall-effect anode 846, 
it is expected that a discharge plasma for the ion thruster 
component 830 may be generated similarly. In the embodi-
ment illustrated in FIG. 8, radial slots 850 are provided 
around the circumference of the exterior of the Hall-effect 
component 820 to provide a passage to the annular-shaped 
discharge chamber 836 for neutrals, ions, and energetic elec-
trons. 

By appropriate shaping of the magnetic field in the passage 
(e.g. axial B-field component across the radial slots) and 
de-energizing the Hall-effect solenoid (not shown) creating 
the downstream radial B-field component in the Hall channel, 
it should be possible to back-stream electrons 860 from the 
NCA 810, through the radial slots 850 toward the ion dis-
charge anode 870 and in the process deplete their energy and 
use them efficiently to generate the ion thruster discharge 
plasma. The location of electron current collection and hence 
which discharge is operated (Hall-effect or ion) could be 
controlled by the switches identified in FIG. 7 and by the 
propellant flow rates through the respective plena. Alterations 
are available to artisans to optimize the magnetic field of the 
ion discharge may be accomplished to meet design con-
straints. 

With reference now to FIG. 9, a simplified electrical sche-
matic for a dual thruster embodiment having a single, central 
neutralizer cathode assembly 810 is shown. Although there is 
no longer a separate DCA discharge, the ion anode power 
supply 920 remains to provide a bias voltage to the screen 
electrode 930 of the ion optics 840. 

Withreference now to FIG. 10, in yet another embodiment, 
a dual engine thruster 1000 includes an ion thruster compo-
nent 1010 and a Hall-effect component 1020. While similar in 
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many respects to the embodiments above, one distinction lies 
in the ion discharge chamber 1030 and an attempt to eliminate 
asymmetries caused by off-axis discharge cathode assem-
blies in the annular discharge chamber. Specifically, dis-
charge chamber 1030 includes an annular section 1032 and a 5 

cylindrical section 1034. Annular section 1032 is bordered on 
one side by the exhaust annulus 1040 and by the cylindrical 
section 1034 on the opposing side. Desirably, a single dis-
charge cathode assembly 1050 including cathode 1052 and 
propellant feed 1054 lies on central axis A. To support the to 
Hall-effect component 1020, a mechanical support 1060 is 
provided, although it is appreciated that other supports in 
addition to the illustrated mechanical support could be inter-
changed. Supporting floor 1062 of mechanical support 1060 
is insulated from the annular ion anode (discussed below) and 15 

is held at cathode potential. 
The illustrated embodiment includes an annular ion anode 

1070 of potentially greater surface area permitting higher 
currents and desirable features as described above. In the 
embodiment shown, annular ion anode 1070 lines but is insu- 20 

lated from an exterior surface 1082, a bottom 1084 of the 
cylindrical section, and an interior surface 1086. 

As described in the embodiments above, a dual thruster is 
anticipated to have certain operational and performance char-
acteristics. For example, a dual thruster can be operated in 25 

multiple `modes.' Referring now to FIG. 11, in a `Hall-effect 
mode' 1110 the propellant flow is channeled through the Hall 
plenum and the central common NCA. The solenoid to gen-
erate the radial magnetic field component and the Ion Beam/ 
Hall-Effect Anode Dual Power Supply are energized. S1 30 

switch is open, and S2 switch is closed. The Hall-effect com-
ponent of the dual thruster is then operated as a conventional 
Hall thruster. Operating range would be typically 1200-2000 
seconds specific impulse as seen at 1110. 

As another example, the dual thruster can be operated in an 35 

`ion mode' 1120 where the propellant flow is channeled 
through the ion plenum, the DCA, and the central common 
NCA. The Ion Anode Power Supply, the Ion Beam/Hall-
Effect Anode Dual Power Supply, and the Ion Accelerator 
Electrode Power Supply are all energized. S1 switch is 40 

closed, and S2 switch is open. The ion component of the dual 
thruster is then operated as a conventional ion thruster. Oper-
ating range would be typically 2000-4000 seconds specific 
impulse as seen at 1120. 

In yet another example, the dual thruster can be operated in 45 

a `burst mode' 1130 where the propellant flow is channeled 
through all 4 locations, all power supplies are energized, and 
both SI and S2 switch are closed. The Hall-effect and ion 
components of the dual thruster are then both operated simul-
taneously. Operation would be typically in the 1800-2200 50 

seconds specific impulse range, in a zone where both com-
ponents are capable of functioning with some overlap in 
capability 1130. This mode is theoretically possible but may 
not be operationally advantageous. However, two potential 
reasons foroperating inthis burstmode include: (a)Providing 55 

a seamless-transition in specific impulse throttling between 
Hall-effect mode 1110 and ion mode 1120 operation; and (b) 
assuming there is sufficient capability in the power electron-
ics and propellant management system, operating at a total 
input power and generating a total thrust level for the dual 60 

thruster exceeding that which could be achieved by either the 
Hall-effect or ion components alone. 

As mentioned above in discussing the annular discharge 
chamber ion thruster, when the dual thruster is operated in ion 
mode 1120 higher efficiencies at fixed input power, and 65 

higher input power at fixed specific impulse are possible, as 
compared to conventional ion thrusters. For example, the  

12 
flat-geometry of the ion optics electrodes afforded by the 
annular design will improve the efficiency of the thruster as 
compared to a conventional ion thruster of equivalent beam 
area. This is because the thrust-losses associated with beam 
divergence due to the domed shape of conventional ion thrust-
ers are eliminated in the annular design. 

Moreover, both the specific impulse and the thrust are 
proportional to the thrust-loss correction factor due to off-axis 
beam vectoring (F,); hence the overall thruster efficiency, 
which includes the specific impulse and thrust terms, is pro-
portional to F t2 . The correction F, includes both the beam 
divergence due to the electrode dome shape F,-d  and beam 
divergence due to beamlet expansion F,,. 

From equation 9 of Soulas, G. C., "Design and Perfor-
mance of 40 cm Ion Optics," the NEXT ion thruster optics 
(dome height of approximately 2.35 cm and chord of 18 cm) 
F,dis estimated to be approximately 0. 983. Hence, the reduc-
tion in thrust and specific impulse, and overall thruster effi-
ciency of the NEXT ion thruster due to off-axis beam vector-
ing caused by the domed ion optics is expected to be 0.017, or 
-1.7% {100*(F,,-1.00)} in thrust and specific impulse, and 
0.034, or -3.4% {100*(F" 2_1.00)} in efficiency at all 
throttle conditions. Therefore, all else being equal, for an 
equivalent beam area dual thruster with flat ion optics (FId  
equal to 1.00), a 3.4% increase in efficiency as compared to 
the NEXT ion thruster would be expected across the entire 
specific impulse range as seen below: 

TABLE 4 

One of the design issues with the NEXT thruster, and other 
conventional partial-conic or cylindrical discharge chamber 
ion thrusters (such as the NSTAR ion thruster, or the NASA 
GRC 50 cm laboratory model ion thruster), is that they cannot 
take full advantage of the ion current extraction capability of 
the ion optics technology and hence operate at-or-near their 
maximum theoretical input power capability. 

The NEXT neutralizer cathode, discharge cathode, mag-
nets, ion optics, and high voltage propellant isolators all have 
adequate thermal and/or operational margins for operation at 
extremely-high input power levels; well in excess of the 7 kW 
maximum input power of the NEXT throttle table. Addition-
ally, conventional NEXT ion optics are capable of operating 
at beam currents well-in-excess-of the maximum 3.52 A of 
the NEXT throttle table; »7.0 A beam currents at full total 
voltage (2010 V). Application of advanced high-perveance 
design ion optics to the NEXT thruster would allow for opera-
tion at beam currents »7.0 A at low total and beam voltages, 
thus enabling truly-high Thrust-to-Power operation. 

Unfortunately, although operation at these high beam cur-
rents is consistent with the ion extraction system electrostatic 
functionality, they require a maximum sustainable discharge 
current which exceeds that which can be supported by the 

Throttle Thruster 

level/Input NEXT-STEP & NEXT Annular Ion Thruster 

Power T/P- Specific T/P- Specific 
Level, ratio, Impulse, ratio, Impulse, Effi- 
kw mN/kW sec Efficiency mN/kW sec ciency 

X2.498 60.8 1711 0.499 61.8 1740 0.516 
-3.658 54.9 2240 0.601 55.8 2277 0.621 
/4.818 50.0 2666 0.655 50.8 2711 0.677 
TL23/2.816 42.2 3090 0.640 42.9 3142 0.662 
TL25/3.683 37.8 3616 0.670 38.4 3676 0.693 
TL12/2.439 32.9 3999 0.645 33.4 4066 0.667 
TL40/6.860 34.5 4188 0.708 35.1 4258 0.732 
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available anode surface area of the NEXT thruster discharge 
chamber. The maximum sustainable discharge current for the 
NEXT thruster is estimated to be in the range of about 32-35 
Amperes, yielding a maximum beam current of about 7.0 A. 

As documented in Table 3, for a given beam area, imple-
mentation of the annular discharge chamber either in a dual 

14 
thruster maximum input power is limited by the ion optics 
current-extraction-capability. That is, the engine is much 
more capable of taking full-advantage of the ion optics elec-
trostatics than the NEXT thruster. At about 3340 seconds 

5  specific impulse and below, the maximum input power and 
thrust are equivalent to the NEXT thruster. 

TABLE 5 

Attribute NEXT Ion Thruster Dual Engine B (Tables 2 and 3) 

Beam Area, cm2  1257 1257 
Discharge 3334 7954 
Chamber Anode 
Surface Area, cm Z  
Maximum 135 1 84 
Sustainable 
Discharge 
Current, A 
Maximum Anode- 17.0 1 16.8 
Area-Limited 
Beam Current, A 

Anode 
Max. Max. Max. Area- Max. 
Beam Anode Area- Input Max. Beam or- Input Max. 

Specific Impulse Current, or-Optics Power, Thrust, Current, Optics Power, Thrust, 
sec A Limited kw mN A Limited kW mN 

4434 7.04 Anode 13.646 472.1 16.8 Anode 32.501 1127 
4139 7.04 Anode 12.042 440.8 14.5 Optics 24.755 907.8 
3908 7.04 Anode 10.865 416.2 11.0 Optics 16.951 650.2 
3592 7.04 Anode 9.371 382.5 7.30 Optics 9.715 396.6 
3338 7.04 Anode/Optics 8.287 355.5 7.04 Optics 8.287 355.5 
3188 7.04 Anode/Optics 7.689 339.5 7.04 Optics 7.689 339.5 
3031 7.04 Anode/Optics 7.082 322.8 7.04 Optics 7.082 322.8 
2733 7.04 Anode/Optics 6.027 291.0 7.04 Optics 6.027 291.0 

thruster arrangement or as a stand-alone annular ion thruster 35  
increases the effective and available anode surface area, as 
compared to conventional ion thrusters. The larger anode 
surface area increases the permissible sustainable discharge 
current and therefore beam current and thruster input power 
for a given beam voltage (specific impulse). The increase in 40 
sustainable discharge current (and approximate equivalent 
increase in beam current and input power) will be either 
directly proportional to the increase in anode surface area 
or will be equal to the discharge current necessary to sup-
port the maximum perveance-limited beam current that the 45 

ion optics are capable of extracting, whichever is less. 
For an ion thruster with beam area equivalent to that of the 

NEXT ion thruster, an increase in anode surface area of 2.4x 
is possible. This permits an increase in sustainable discharge 
current and increase in beam current and thruster input power 50 

for a given beam voltage (specific impulse). 
The increase in input power for a dual thruster versus a 

NEXT ion thruster of equivalent beam area is documented in 
Table 5 for a range of specific impulse. As indicated in Table 
5 the input power to the NEXT ion thruster is limited by the 55 

anode-area down to about 3340 seconds specific impulse. 
Below this level, both the anode-area and the ion optics cur-
rent-extraction-capability limit the thruster input power. 

The annular ion and dual thruster is also anode-area limited 
at high specific impulse (4430 seconds); the ion optics are 60 

capable of supporting >20 A beam current, which would 
require a discharge current of greater than 84 Amperes. 
Although at this specific impulse the engine is anode-area 
limited, the maximum input power and thrust for this engine 
are 2.4x higher than that feasible with the equivalent-beam 65 

area NEXT thruster, due to the larger anode area of the dual 
thruster. At 4140 seconds specific impulse and below the dual 

The data in Table 5 for the dual thruster are conservative 
estimates. This is because: a) the 1.7% increases in both 
specific impulse and thrust expected with the dual thruster 
due to the flat-geometry electrodes were not included; and b) 
the design of the dual thruster assumed the same ion optics 
electrostatic design as that of the NEXT thruster. The dual 
thruster could in fact incorporate an advanced-perveance ion 
optics design in an annular configuration while maintaining 
the same beam area as the NEXT thruster optics. This dual 
thruster design would yield an increase in input power and 
thrust as compared to that documented in Table 5. It should be 
noted that there would be no advantage to applying advanced-
perveance ion optics configuration to the NEXT thruster 
since its maximum beam current is already limited or inhib-
ited by the anode-area. 

With reference now to FIG. 12, a graph illustrates the 
differences in maximum input power as a function of specific 
impulse for the Dual Engine B 1210 in Table 5 and an exem-
plary current thruster 1220 (NEXT) of equivalent beam area 
and electrode geometry and as set forth in Table 5. As can be 
seen, the slope of the curve 1210 dramatically increases above 
3500 seconds specific impulse. 

With reference now to FIG. 13, a graph illustrates the 
differences in maximum thrust capability as a function of 
specific impulse for the Dual Engine B 1310 in Table 5 and an 
exemplary current thruster 1320 (NEXT) of equivalent beam 
area and electrode geometry and as set forth in Table 5. As can 
be seen, the slope of the curve 1310 dramatically increases 
above 3500 seconds specific impulse. 

It can now be appreciated that many variations of the dual 
thruster described here are possible. For example: using a 
second, or interior thruster other than a Hall-effect compo-
nent, combining various sizes of Hall-effect components and 
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ion components, to yield difference total specific impulse 
throttling ranges, and different total ranges in input power and 
thrust capability-depending upon the application need. One 
case example is provided here to define overall performance 
of a dual thruster. This example is for illustration, with the 
performance characteristics quoted specific to the selected 
configuration. As such the performance numbers documented 
do not imply any particular limits in capability to the dual 
thruster concept in general. 

Table 6 lists the projected performance capabilities of one 
embodiment of a dual thruster, with a Hall-effect component 
having physical characteristics similar to that of the NASA 
GRC 300M Hall thruster, and an Ion component with beam 
area equivalent to the NASA NEXT Ion thruster. The perfor-
mance of the Hall-effect component with specific impulse 
was modeled assuming a similar efficiency-specific impulse 
characteristic as the BPT-4000 Hall-Effect thruster, with a 
nominal input power of 20 kW at 2000 seconds specific 
impulse which is the design basis for the 300M. 

The ion component of the dual thruster was modeled in a 
fashion consistent with prior ion thruster performance mod-
eling conductedby this author assuming a discharge chamber, 
propellant efficiency of 0.92. The performance gains due to 
the elimination of the thrust-losses associated with domed ion 
optics were included in these calculations. Additionally, an 
advanced-perveance ion optics electrode design was assumed 
using equation 15 of Patterson, M. 7., "NEXT Study of 
Thruster Extended-Performance II (NEXT STEP II). 

TABLE 6 

Thrust- 
to- 

Specific 	 Power 
Impulse, 	Input Power, 	 Ratio, 

Mode 	sec 	kw 	Thrust, mN mN/kW Efficiency 

Hall- 1220 4.440 351.1 79.0 0.473 
Effect 
Hall- 1440 5.560 408.9 73.6 0.520 
Effect 
Hall- 1610 6.670 457.8 68.7 0.542 
Effect 
Hall- 1740 7.780 510.0 65.6 0.560 
Effect 
Hall- 1840 13.330 844.4 63.3 0.572 
Effect 
Burst 1840 19.201 1196 62.3 0.562 

(13.330+5.871) (844.4+351.5) 
Burst 1960 23.362 1610 61.1 0.587 

(20.000 + 6.362) (1236 + 374.5) 
Burst 2150 27.206 1540 56.6 0.597 

(20.000 + 7.206) (1129 + 411.0) 
Ion 2150 7.206 411.0 57.0 0.602 
Ion 2207 7.471 421.7 56.4 0.611 
Ion 2298 7.912 439.0 55.5 0.625 
Ion 2538 9.172 484.9 52.9 0.658 
Ion 2758 10.432 526.9 50.5 0.683 
Ion 2774 12.188 614.1 50.4 0.685 
Ion 3076 13.703 648.5 47.3 0.714 
Ion 3235 15.634 716.3 45.8 0.727 
Ion 3387 16.875 750.0 44.4 0.738 
Ion 3645 19.561 823.6 42.1 0.752 
Ion 3966 25.691 1010 39.3 0.765 
Ion 4200 28.573 1070 37.5 0.771 
Ion 4499 32.501 1146 35.3 0.778 

Note in Table 6, `Hall-Effect Mode'refers to the Hall-effect 
component operating solely (from 1220-1840 seconds spe-
cific impulse), `Ion Mode' refers to the ion component oper-
ating solely (from 2150-4500 seconds specific impulse), and 
Burst Mode' refers to both components operating simulta-
neously. In this example case, burst mode is operated in the 

16 
specific impulse `overlap-zone' of 1840-2150 seconds spe-
cific impulse. The individual input power and thrust contri-
butions of the two components in burst mode are documented 
in Table 6, with the first number associated with the Hall- 

s effect component and the second number associated with the 
ion component. 

As noted in Table 6, this dual thruster provides a continu-
ous-throttling capability from 1220-4500 seconds specific 
impulse (3.7:1 range), with an input power range of 4.44-32.5 

to kW (7.3:1), thrust of 351-1146 mN (3.3:1), and efficiency of 
0.47-0.78. A peak in input power and thrust occur over the 
specific impulse overlap-zone of the burst mode, with slight 
reduction in efficiency in this region. 

15 	With reference now to FIG. 14, input power vs. specific 
impulse for the dual thruster of Table 6 is graphed at 1410. For 
comparison, input power vs. specific impulse for the maxi- 
mum input power of a NEXT ion thruster is graphed at 1420. 

With reference now to FIG. 15, thrust vs. specific impulse 
20 for the dual thruster of Table 6 is graphed at 1510. For com-

parison, thrust vs. specific impulse for the maximum input 
power of a NEXT ion thruster is graphed at 1520. 

With reference now to FIG. 16, engine efficiency vs. spe-
cific impulse of the dual thruster of Table 6 is graphed at 1610. 

25  For comparison, also plotted is efficiency data for a current 
Hall-effect thruster 1620 (BPT-4000) and a current ion 
thruster 1630 (NEXT). It is noted that the dual thruster curve 
1610 represents the performance capability of a single device 
over the useful impulse range. 

30 	As seen in FIG. 16 a significant efficiency gain is expected 
for the dual thruster during operation in `Ion Mode' (>2150 
seconds specific impulse) as compared to current EPTs. 
These efficiency gains are due to the elimination of diver- 

35  gene-losses associated with the ion optics geometry, along 
with other efficiency gains as a consequence of the fact that 
the dual thruster is operating at much higher input power 
levels at a given specific impulse. 

The dual thruster could be applied to any application for 
40 whichthe high thrust-to-power characteristics of a Hall-effect 

thruster and high specific impulse capability of an ion thruster 
would be advantageous. For example: those Earth-orbital 
applications requiring both primary and auxiliary electric 
propulsion functions; Earth-orbital applications requiring 

45 both rapid orbit changes and fuel-efficient less-time-critical 
orbital changes; and Planetary mission applications requiring 
both fuel-efficient high-delta-V transfers and on-orbit high 
thrust-to-power operations. 

In one embodiment of a dual thruster, the Hall-effect or 
50 other suitable second thruster component and the ion compo-

nent may have approximately the same input power capabili-
ties at their nominal design specific impulses (about 2000 
seconds for Hall-effect and 3600 seconds for ion). This geom-
etry is referred to here as a `Matched-Dual-Mode.' This con- 

55 figuration is that provided in the example case earlier, and 
would be appropriate if both components were required to 
perform a primary-propulsive application. 

In an alternative embodiment, referred to here as a `Mixed- 
Dual-Mode,' involves combining a Hall-effect or other suit- 

6o able second thruster component and an ion component with 
markedly-different input power capabilities at their respec- 
tive nominal design specific impulses. This may be most- 
appropriate if one component were required to provide pri- 
mary propulsion and the other component provide auxiliary 

65 propulsion; for example, combining a high-power Hall-effect 
component core (such as the NASA GRC 300M) for rapid 
(Earth) orbital transfers with a low-power ion component (for 
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example, beam area equivalent to the NASA NSTAR 
thruster) for station-keeping. These configuration options are 
captured in Table 7. 

TABLE 7 

Ion Component 

Intermediate- 
Low-Power 	Power 	High-Power 

Hall-Effect 	Low-Power 	Matched 	Mixed 	Mixed 
Component 	Intermediate- 	Mixed 	Matched 	Mixed 

Power 
High-Power 	Mixed 	Mixed 	Matched 

While the systems, methods, and so on have been illus-
trated by describing examples, and while the examples have 
been described in considerable detail, it is not the intention of 
the applicants to restrict or in any way limit the scope of the 
appended claims to such detail. It is, of course, not possible to 
describe every conceivable combination of components or 
methodologies for purposes of describing the systems, meth-
ods, and so on provided herein. Additional advantages and 
modifications will readily appear to those skilled in the art. 
Therefore, the invention, in its broader aspects, is not limited 
to the specific details, the representative apparatus, and illus-
trative examples shown and described. Accordingly, depar-
tures may be made from such details without departing from 
the spirit or scope of the applicants' general inventive con-
cept. Thus, this application is intended to embrace alterations, 
modifications, and variations that fall within the scope of the 
appended claims. Furthermore, the preceding description is 
not meant to limit the scope of the invention. Rather, the scope 
of the invention is to be determined by the appended claims 
and their equivalents. 

As used herein, "connection" or "connected" means both 
directly, that is, without other intervening elements or com-
ponents, and indirectly, that is, with another component or 
components arranged between the items identified or 
described as being connected. To the extent that the term 
"includes" or "including" is employed in the detailed descrip-
tion or the claims, it is intended to be inclusive in a manner 
similar to the term "comprising" as that term is interpreted 
when employed as a transitional word in a claim. Further-
more, to the extent that the term "or" is employed in the 
claims (e.g., A or B) it is intended to mean A or B or both". 
When the applicants intend to indicate "only A or B but not 
both" then the term "only A or B but not both" will be 
employed. Similarly, when the applicants intend to indicate 
"one and only one" of A, B, or C, the applicants will employ 
the phrase "one and only one". Thus, use of the term "or" 
herein is the inclusive, and not the exclusive use. See, Bryan 
A. Gamer, A Dictionary of Modern Legal Usage 624 (2d. Ed. 
1995). 

The invention claimed is: 
1. An electric propulsion thruster comprising: 
an ion thruster comprising: 
an annular discharge chamber surrounding a physically 

spaced central space, both the annular discharge cham-
ber and the central space centered around a common 
axis, the annular discharge chamber having a closed end 
and an opposite exhaust annulus, the physically spaced 
central space extending from the closed end to the oppo-
site exhaust annulus to form an outlet; 

a discharge cathode operatively disposed within the annu-
lar discharge chamber; 

18 
an annular anode operatively disposed within the annular 

discharge chamber between the closed end and the 
exhaust end; and 

ion optics operatively associated with the exhaust annulus. 
5 2. The electric propulsion thruster as set forth in claim 1, 

further comprising a neutralizer cathode disposed along the 
common axis. 

3. The electric propulsion thruster as set forth in claim 2, 
further comprising a Hall-effect thruster disposed within the 

to central space surrounding the neutralizer cathode. 
4. The electric propulsion thruster as set forth in claim 1, 

where the ion optics comprise a first substantially planar, 
annular electrode and a spaced second substantially planar, 
annular electrode. 

15 	5. The electric propulsion thruster as set forth in claim 4, 
where the ion optics comprise a ratio of a span to a gap less 
than 300:1, where the span comprises a distance from an 
inside radius to a larger outside radius of the ion optics and the 
gap comprises a distance from the first electrode to the second 

20 electrode. 
6. The electric propulsion thruster as set forth in claim 1, 

where the anode comprises a surface area greater than 6000 
cm2 . 

7. The electric propulsion thruster as set forth in claim 1, 
25 where a ratio of an anode surface area to beam area is greater 

than 4:1. 
8. The electric propulsion thruster as set forth in claim 3, 

further comprising a propellant feed for the ion thruster, a 
propellant feed for the Hall-effect thruster, and a propellant 

30 feed for the neutralizer cathode. 
9. The electric propulsion thruster as set forth in claim 3, 

further comprising a plurality of radial passages between the 
Hall-effect thruster and the annular discharge chamber. 

10. An electric propulsion thruster comprising: 
35 	a neutralizer cathode disposed on a central axis; 

a Hall-effect thruster centered on the central axis; and 
an ion thruster surrounding the Hall effect thruster com-

prising: 
a discharge chamber having an exhaust annulus at one 

40 	end; 
an anode operatively disposed within the discharge 

chamber; and 
first and second substantially planar annular electrodes 

operatively disposed adjacent to the exhaust annulus, 
45 the first and second substantially planar annular elec-

trodes spaced from each other by a substantially uni-
form gap. 

11. The electric propulsion thruster as set forth in claim 10, 
where the first and second substantially planar annular elec- 

50 trodes comprise a ratio of a span to the substantially uniform 
gap less than300:1, wherethe span comprises a distance from 
an inside edge of one of the first or second annular electrodes 
to an outside edge of the same first or second annular elec-
trodes. 

55 	12. The electric propulsion thruster as set forth in claim 10, 
where the anode comprises a surface area greater than 3.5 
times than that of an area corresponding to a beam area. 

13. The electric propulsion thruster as set forth in claim 10, 
further comprising a propellant feed for the ion thruster, a 

60 propellant feed for the Hall-effect thruster, and a propellant 
feed for the neutralizer cathode. 

14. The electric propulsion thruster as set forth in claim 10, 
further comprising a plurality of radial passages between the 
Hall-effect thruster and the discharge chamber. 

65 	15. The electric propulsion thruster as set forth in claim 10, 
where the discharge chamber comprises an annular chamber 
surrounding the Hall effect thruster in communication with a 
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substantially cylindrical discharge chamber underlying and 
mechanically supporting the Hall effect thruster. 

16. The electric propulsion thruster as set forth in claim 10, 
comprising an engine efficiency greater than 0.70 at a specific 
impulse greater than 3000 seconds. 5 

17. The electric propulsion thruster as set forth in claim 10, 
comprising an engine efficiency greater than 0.50 at a specific 
impulse greater than 1500 seconds and an engine efficiency 
greater than 0.65 at a specific impulse greater than 3000 
seconds. 10 

18. An electric propulsion machine comprising: 
an ion thruster comprising: 
an annular discharge chamber surrounding a central cylin-

der and centered upon an axis, the annular discharge 
chamber having an exhaust annulus, the central cylinder 15 

extending from a closed end to the exhaust annulus to 
form an outlet; 

an annular anode operatively disposed within the annular 
discharge chamber between the closed end and the 
exhaust end, the anode including a surface area greater 20 

than 3.5 times than that of an area corresponding to a 
beam area; and 

ion optics operatively associated with the exhaust annulus. 
19. The electric propulsion machine as set forth in claim 

18, further comprising an engine efficiency greater than 0.70 25 

at a specific impulse greater than 3000 seconds. 
20. The electric propulsion machine as set forth in claim 

19, further comprising an engine efficiency greater than 0.50 
at a specific impulse greater than 1500 seconds and an engine 
efficiency greater than 0.65 at a specific impulse greater than 30 

3000 seconds. 
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